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Abstract
We train a bilingual Arabic-Hebrew language model using a transliterated version of Arabic texts in Hebrew, to
ensure both languages are represented in the same script. Given the morphological, structural similarities, and the
extensive number of cognates shared among Arabic and Hebrew, we assess the performance of a language model
that employs a unified script for both languages, on machine translation which requires cross-lingual knowledge. The
results are promising: our model outperforms a contrasting model which keeps the Arabic texts in the Arabic script,
demonstrating the efficacy of the transliteration step. Despite being trained on a dataset approximately 60% smaller
than that of other existing language models, our model appears to deliver comparable performance in machine

translation across both translation directions.
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1. Introduction

Pre-trained language models have become es-
sential for state-of-the-art performance in mono-
and multilingual natural language processing (NLP)
tasks. They are pre-trained once and can then be
fine-tuned for various downstream NLP tasks. It
has been shown that language models generalize
better on multilingual tasks when the target lan-
guages share structural similarity, possibly due to
script similarity (K et al., 2020). Typically, language
models are trained on sequences of tokens that of-
ten correspond to words and subword components.

Arabic and Hebrew are two Semitic languages
that share similar morphological structures in the
composition of their words, but use distinct scripts
for their written forms. The Hebrew script primar-
ily serves Hebrew, but is also employed in vari-
ous other languages used by the Jewish popula-
tion. These languages include Yiddish (or “Judeo-
German”), Ladino (or “Judeo-Spanish”), and Judeo-
Arabic, which comprises a cluster of Arabic dialects
spoken and written by Jewish communities resid-
ing in Arab nations. To some extent, Judeo-Arabic
can be perceived as an Arabic variant written in the
Hebrew script. Most of the vocabulary in Judeo-
Arabic consists of Arabic words that have been
transliterated into the Hebrew script.

Words in two languages that share similar mean-
ings, spellings, and pronunciations are known as
cognates. Arabic and Hebrew cognates share simi-
lar meanings and spellings despite different scripts.
The pronunciation of such cognates are not nec-
essarily the same. Numerous lexicons have been
created to record these cognates. One of those
lexicons' lists a total of 915 Hebrew-Arabic spelling
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equivalents, of which 435 have been identified as
authentic cognates, signifying that they possess
identical meanings. Analyzing a parallel Hebrew-
Arabic corpus, named Kol Zchut? using this lexicon,
we found instances of those cognates in about 50%
of the sentences.

The purpose of this work is to take advantage of
the potentially high frequency of cognates in Arabic
and Hebrew in building a bilingual language model
using only one script. Subsequently, the model will
be fine-tuned on NLP tasks, such as machine trans-
lation, which can benefit from the innate bilingual
proficiency to achieve better results. To ensure that
cognates are mapped onto a consistent character
space, the model uses Arabic texts that are transilit-
erated into the Hebrew script, which mimics the
writing system used in Judeo-Arabic. We call this
new language model HeArBERT.?

We test our new model on machine translation,
which is considered a downstream task requiring
knowledge in two languages, and report on some
promising results. In summary, the primary contri-
butions of our work are: (1) we release a new bilin-
gual Arabic-Hebrew language model; and, (2) we
show that pre-training a bilingual language model
on transliterated texts, as a way for aligning tokens
onto the same character space, is beneficial for
machine translation.

2. Related Work

K et al. (2020) have suggested that structural
similarity of languages is essential for language
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model's multilingual generalization capabilities.
Their suggestion was further discussed by Dufter
and Schutze (2020), who highlighted the essential
components for a model to possess “multilinguality”,
and show that the order of the words in the sentence
is key to the model’s cross-lingual generalization
capabilities. MBERT, as introduced by Devlin et al.
(2019), was a pioneering language model that en-
compassed multiple languages, including Arabic
and Hebrew. However, both Arabic and Hebrew are
significantly under-represented in the pre-training
data, resulting in inferior performance compared
to the equivalent monolingual models on various
downstream tasks (Antoun et al., 2020; Lan et al.,
2020; Chriqui and Yahav, 2022; Seker et al., 2022).
GigaBERT (Lan et al., 2020) is another multilingual
model, trained for English and Arabic. However, the
best results for most of the known NLP tasks are
typically achieved by one of the large monolingual
models in both Arabic and Hebrew. CAMeLBERT
(Inoue et al., 2021), is one of those models. ltis
trained on texts written in Modern Standard Ara-
bic (MSA), Classical Arabic, as well as dialectal
variants. In the realm of Hebrew language mod-
els, AlephBERT (Seker et al., 2022) stands out as
one of the leading performers, alongside others
like HeBERT (Chriqui and Yahav, 2022). Among
other datasets, the monolingual models mentioned
above use the relevant parts of the OSCAR dataset
(Ortiz Suarez et al., 2020) for training. Our model
relies solely on the OSCAR dataset for both Hebrew
and Arabic, resulting in a considerably smaller total
number of words for each language in comparison
to the existing monolingual language models.

The effect of transliteration on cross-lingual
generalization were discussed previously in
(Dhamecha et al., 2021; Chau and Smith, 2021)
and more recently in (Moosa et al.,, 2023;
Purkayastha et al., 2023). None of these works
study the languages of our focus: Arabic and He-
brew. Dhamecha et al. (2021) focused on lan-
guages from the Indo-Aryan family, which has been
studied before for cross-lingual generalization and
also has several publicly available multilingual mod-
els. To the best of our knowledge, our work is first
to study generalization between Arabic and Hebrew
and no multilingual masked language models that
include both languages have been published apart
from mBERT.

Chau and Smith (2021) address the generaliza-
tion from high- to low-resourced languages. How-
ever, both Arabic and Hebrew are currently consid-
ered medium- to high-resourced languages. Fur-
thermore, their evaluation focuses solely on token-
level classification tasks, such as dependency pars-
ing and part-of-speech tagging, whereas our eval-
uation targets machine translation, a sequence-to-
sequence bilingual task.

Purkayastha et al. (2023) employ Romanization
for transliteration, whereas we transliterate Arabic
into the Hebrew script. Analogous to Chau and
Smith (2021), their evaluation centers on token-
level classification tasks, which are not addressed
in our work.

3. Methodology

We begin by pre-training a new language model
using texts written in both Arabic and Hebrew. This
model, named HeArBERT, is subsequently fine-
tuned to enhance performance in machine transla-
tion between Arabic and Hebrew.

For pre-training, we utilize the de-duplicated Ara-
bic (~3B words) and Hebrew (~1B words) versions
of the OSCAR dataset (Ortiz Suarez et al., 2020).
In this work, we aim to measure the impact of nor-
malizing all texts to a shared script, so that cognates
can be unified under the same token representa-
tion. Therefore, we transliterate the Arabic texts into
the Hebrew script as a preprocessing step for both
training and testing. Our transliteration procedure is
designed following most of the guidelines published
by The Academy of the Hebrew Language who has
defined a Hebrew mapping for every Arabic letter?,
and the mapping provided in (Terner et al., 2020).
Only Arabic letters are converted to their Hebrew
equivalents, while non-Arabic characters remain
unchanged. Our implementation is based on a sim-
ple lookup table, executed letter by letter, which is
composed of the two mappings mentioned above,
as shown in Appendix A.

For evaluation, we independently train the model
twice: once with the transliteration step and once
without. We subsequently compare the perfor-
mance of these two versions when fine-tuned on a
downstream machine translation test set.

Our model is based on the original BERT-base
architecture. We train a WordPiece tokenizer with
a vocabulary size of 30,000, limiting its accepted
alphabet size to 100. This approach encourages
the learning of tokens common to both languages,
allowing the tokenizer to focus on content rather
than on special characters not inherent to either
language. We choose to train only for the masked
language model (MLM) task employed originally in
BERT, ignoring the next-sentence-prediction com-
ponent, as it has previously been proven less ef-
fective (Liu et al., 2019). Overall, we trained each
model for the duration of 10 epochs, over the course
of approximately 3 weeks, using 4 Nvidia RTX 3090
GPUs.

Fine-tuning HeArBERT is done similar to fine-
tuning the original BERT model, except for the ad-
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dition of the transliteration step of Arabic letters
that takes place prior to tokenization. In this pre-
processing step, all non-Arabic letters remain intact,
while Arabic letters are transliterated into their He-
brew equivalents, as described above.

The preprocssing and pre-training process of
HeArBERT is depicted in Figure 1

b

Corpus of Arabic and Hebrew texts

v

Replace Arabic characters
with Hebrew characters
based on a lookup table

v

(Train tokenizer on processed corpus)

v

[Train language model on processed corpus]

Output model

Figure 1: Pre-training process of HeArBERT.

4. Experimental Settings

Machine Translation. Our machine-translation
architecture is based on a simple encoder-decoder
framework, which we initialize using weights of the
BERT model in focus.® For example, if we want
our model to translate from Hebrew to Arabic, we
might initialize the encoder with the model weights
of mBERT and the decoder with the weights of
CAMEelBERT. To fine-tune the model on machine
translation, we use the new “Kol Zchut” (in English,
“All Rights”) Hebrew-Arabic parallel corpus® which
contains over 4,000 parallel articles in the civil-legal
domain, corresponding to 140,000 sentence-pairs
in Arabic and Hebrew containing 2.13M and 1.8M
words respectively. To the best of our knowledge,
ours is the first work to report machine translation
results using this resource; therefore, no estab-
lished baseline or benchmark exists for compari-
son. As the corpus is provided without an official
train/test split, we apply a random split with 80% of
the data being allocated for training and the remain-
ing 20% for testing, usingthe train_test_split

SWe use HuggingFace’s EncoderDecoderModel.
6https ://releases.iahlt.org/

function of scikit-Learn with a random seed of
42. We evaluate our HeArBERT-based translation
against an equivalent system initialized using other
models. The standard BLEU metric (Papineni et al.,
2002) is employed to contrast the system’s gener-
ated translation with the sole reference translation
present in the corpus. Each system is fine-tuned
for the duration of ten epochs, and we report the
best performance observed across all epochs.

Baseline Language Models. To contrast HeAr-
BERT with an equivalent model trained on texts in
both Arabic and Hebrew scripts, we pre-train an-
other model and tokenizer following the same pro-
cedure, but without the transliteration preprocess-
ing for the Arabic data. This model is denoted with
a subscript "NT" (no transliteration): HeArBERT y .

We compare our model with a number of exist-
ing models. The initial model, mBERT, was origi-
nally pre-trained on a range of languages, includ-
ing both Arabic and Hebrew. We also chose a
couple of monolingual Arabic language models,
with specific versions from Hugging Face provided
in a footnote. Specifically, we use CAMeLBERT”
and GigaBERT®. In some experiments, we adopt
a technique inspired by Rom and Bar (2021). This
involves expanding the vocabulary of an existing
Arabic language-model’s tokenizer by appending a
Hebrew-transliterated version of each Arabic token
and associating it with the original token identifier.
We denote such extended models by adding “ET”
(extended tokenizer) to the model name.

All these models share the same architecture
size as our proposed model.

5. Results

The results are summarized in Table 1. The table
rows are organized into three distinct groups. The
first group features combinations of various base-
line models. The second group showcases com-
binations incorporating our proprietary HeArBERT
model, while the third group highlights combina-
tions involving the contrasting HeArBERT n model.
We train multiple machine-translation combinations,
in both directions Arabic-to-Hebrew and Hebrew-
to-Arabic, based on the same encoder-decoder ar-
chitecture, initialized with different language model
combinations. We assign various combinations of
language models to the encoder and decoder com-
ponents, ensuring that the selected models align
with the respective source and target languages.
In other words, we make sure that the language

7CAMeL—Lab/bert—base—arabic—camelbert—
mix
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Arabic-to-Hebrew

Hebrew-to-Arabic

Encoder Decoder BLEU || Encoder Decoder BLEU
mBERT mBERT 15.59 || mBERT mBERT 11.48
CAMelLBERT CAMelLBERT g7 12.47 || CAMeLBERT g+ | CAMeLBERT 16.86
CAMelLBERT g1 CAMelLBERT g1 12.66 || CAMeLBERTzr | CAMeLBERT g+ | 17.15
HeArBERT (ours) | HeArBERT (ours) | 24.97 || HeArBERT HeArBERT 18.92
GigaBERT HeArBERT 25.28 || HeArBERT GigaBERT 21.17
CAMeLBERT HeArBERT 23.69 || HeArBERT CAMelLBERT 19.41
HeArBERT HeArBERT 23.97 || HeArBERT y7 HeArBERT y7 18.32
GigaBERT HeArBERT yr 23.73 || HEArBERT GigaBERT 21.00
CAMelLBERT HeArBERT yr 22.76 || HeArBERT yr CAMeLBERT 19.05

Table 1: Machine translation performance (BLEU scores on the Kol Zchut test set).

model which we use to initialize the encoder, is
compatible with the system’s source language.

Since mBERT and CAMelLBERT g7, as well as
our two models HeArBERT and HeArBERT yr, can
potentially handle both languages, we experiment
with combinations where each of them is assigned
to both, the encoder and decoder components at
the same time.

The results demonstrate that the second group,
which utilizes our HeArBERT to initialize a Hebrew
decoder, surpasses the performance of all other
combinations. Notably, the pairing of GigaBERT
with HeArBERT is the standout performer across
both directions. It surpasses the performance of
using HeArBERT for initializing the Arabic encoder
by only a few minor points. The performance of
HeArBERT yr, as reported in the third group is
consistently lower than HeArBERT in both direc-
tions. The difference seems to be more significant
in the Arabic-to-Hebrew direction. Overall, the re-
sults show that transliterating the Arabic training
texts into the Hebrew script as a pre-processing
step is beneficial for an Arabic-to-Hebrew machine
translation system. The impact of the translitera-
tion proves to be less pronounced in the reverse
translation direction.

Using the extended (ET) version of CAMeLBERT
has a reasonable performance. However, it per-
forms much worse than the best model in both
directions, indicating that extending the vocabulary
with transliterated Arabic tokens does contribute to
better capturing the meaning of Hebrew tokens in
context. This implies that joint pre-training on both
languages is essential for achieving a more robust
language representation.

6. Conclusion

Arabic and Hebrew, both Semitic languages, dis-
play inherent structural resemblances and possess
shared cognates. In an endeavor to allow a bilin-
gual language model to recognize these cognates,
we introduced a novel language model tailored

for Arabic and Hebrew, wherein the Arabic text is
transliterated into the Hebrew script prior to both
pre-training and fine-tuning. We contrast our model
by training another language model on the identical
dataset but without the transliteration preprocess-
ing step, in order to assess the impact of translitera-
tion. We fine-tuned our model for the machine trans-
lation task, yielding promising outcomes. These
results suggest that the transliteration step offers
tangible benefits to the translation process.

Comparing to the translation combination involv-
ing other language models, we see comparable
results; this is encouraging given that the training
data we utilized for pre-training the model is approx-
imately 60% smaller than theirs.

As a future avenue of research, we intend to train
the model on an expanded dataset and explore
scaling its architecture. In this study, our emphasis
was on a transformer encoder. We are keen to in-
vestigate the effects of implementing transliteration
within a decoder architecture, once such a model
becomes available for Hebrew.

Limitations

The transliteration algorithm from Arabic to He-
brew is based a simple deterministic lookup table.
However, sometimes the transliteration is not that
straight forward, and this simple algorithm gener-
ates some odd rendering, which we would like to
fix. For example, our algorithm does not place a
final-form letter at the end of the Arabic word in
Hebrew. Another challenge with transliteration into
Hebrew is that for some words a Hebrew writer
may choose to omit long vowel characters and the
readers will still be able to understand the word.
This phenomenon is referred to as “Ktiv Hasser” in
Hebrew. Yet, there exists a preference for certain
word representations over others. This inconsis-
tency makes it more challenging for aligning the
transliterated Arabic words to their cognates in the
way they are written. Our transliteration algorithm
always renders the Arabic word following the Arabic



letters, which may be different than how this word
is typically written in Hebrew.

Another limitation is the relatively small size of
the dataset which we used for pre-training the lan-
guage model, comparing to other existing language
models of the same architecture size.
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Arabic Hebrew Arabic Hebrew
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s n %) Y
8 mn 3 %
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3 T S Y]
C n & n
L (V) & n
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¢ ’ is )
| 2 % 1
d 2 s N
J 5 g ?
J N i N
N

Table 2: Character mapping used for Arabic-to-Hebrew transliteration.
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