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Abstract
Pre-trained language models (PLMs) have
shown remarkable successes in acquiring a
wide range of linguistic knowledge, rely-
ing solely on self-supervised training on text
streams. Nevertheless, the effectiveness of
this language-agnostic approach has been fre-
quently questioned for its sub-optimal perfor-
mance when applied to morphologically-rich
languages (MRLs). We investigate the hypoth-
esis that incorporating explicit morphological
knowledge in the pre-training phase can im-
prove the performance of PLMs for MRLs.
We propose various morphologically driven
tokenization methods enabling the model to
leverage morphological cues beyond raw text.
We pre-train multiple language models utiliz-
ing the different methods and evaluate them
on Hebrew, a language with complex and
highly ambiguous morphology. Our experi-
ments show that morphologically driven tok-
enization demonstrates improved results com-
pared to a standard language-agnostic tokeniza-
tion, on a benchmark of both semantic and mor-
phologic tasks. These findings suggest that
incorporating morphological knowledge holds
the potential for further improving PLMs for
morphologically rich languages.

1 Introduction

Pre-trained language models (PLMs) have achieved
state-of-the-art results for a great variety of tasks by
utilizing a language-agnostic approach of learning
representations from raw text (Devlin et al., 2019;
Radford et al., 2018). This general approach en-
ables the pre-training of PLMs in languages of dif-
ferent characteristics, either as monolingual (Seker
et al., 2022; Antoun et al., 2020) or multilingual
PLMs (Conneau et al., 2020; Xue et al., 2021).
Most PLMs rely on a statistically driven tokeniza-
tion process, e.g. WordPiece or BPE (Schuster and
Nakajima, 2012; Sennrich et al., 2016), which is re-
sponsible for converting raw-text into a finite set of
symbols — the fundamental units of PLM training.

Despite being highly effective for many lan-
guages, the Hebrew language, as an example
of morphologically-rich language (MRL) with a
highly ambiguous and fusional morphology, intro-
duces challenges to these prevailing tokenization
methods, which makes them sub-optimal for MRLs
(Tsarfaty et al., 2019, 2020; Cao and Rimell, 2021;
Mager et al., 2022; Araabi et al., 2022).

In MRLs, linguistic information is reflected in
the modification of word forms rather than added
functional word, as is the case in configurational
languages such as English. Table 1 (columns 1-5)
demonstrates the phenomenon of joining a word
with a combination of prefixes and suffixes, which
is extremely productive, that is, can be applied
throughout the Hebrew vocabulary. Consequently,
words naturally occur in many different forms, fre-
quently considered as out-of-vocabulary (OOV) by
the tokenization, which is known to be a challenge
for PLMs (Schick and Schütze, 2020).

When encountering OOV words, contemporary
tokenization methods, which are based on frequen-
cies, tokenize them into sub-words that often lack
any morphological meaning. As a result, PLMs are
unable to effectively represent such words based
on the their morphological composition (Hofmann
et al., 2021). The significance of handling rare and
unseen words through morphological composition
is crucial for MRLs, since even with an extensive
corpus of text for a given language,1 numerous
word forms remain scarce or entirely absent, leav-
ing it to the PLMs to deduce the meaning of such
words from its subwords.

Previous studies have identified the tokeniza-
tion phase as the root cause of this problem (Tsar-
faty et al., 2019). Guetta et al. (2022); Feng et al.
(2022) further examined the impact of increasing
the vocabulary size, demonstrating enhanced per-
formance. However, this latter method encoun-

1Hebrew along with other MRLs are considered low to
medium-resourced languages.
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Prefix Suffix Form English
Translation

WordPiece
Tokenization

Morphological
Segmentation
Tokenization

Prefix-Suffix
Separation

Tokenization
- - שחרור! liberation שחרור! שחרור! ש!+חרור!
ש! - ששחרור! that lib. ##ור! ששחר! +שחרור! ש! +שחרור! ש!
ו! ה! ושחרורה! and her lib. ##ה! ושחרור! +ה! +שחרור! ו! +ש!+חרור!+ה! ו!

+כ! ו! נו! וכשחרורנו! and as our lib. ##נו! ##חרור! וכש! +נו! +שחרור! ו!+כ! +ו! +ש!+חרור!+נ! +כ! ו!
(1) (2) (3) (4) (5) (6) (7)

Table 1: Tokenization methods: the word שחרור! (liberation, abbreviated as lib.) in its original form and when joined
with a mixture of prefixes and suffixes. For each tokenization method, the host’s overlapping subword is underlined,
highlighting differences of our examined tokenization methods. Tokenization is based on (Guetta et al., 2022) which
has the extremely large vocabulary size of 128K subwords, the biggest upon all existing Hebrew PLMs.

ters a glass ceiling when facing rare and OOV
words. Keren et al. (2022); Xue et al. (2022); Clark
et al. (2022) explore the other extreme by retiring
to character-based modeling. While theoretically
holding the potential of learning morphological
patterns via the notion of characters, in practice it
achieves on-par results on most morpho-syntactic
tasks for Hebrew, and lagging behind in other, more
semantic tasks, like Named-Entity Recognition
(NER). So, while breaking words into characters
is a viable option, it is both computationally heavy,
and empirically not quite satisfactory.

Klein and Tsarfaty (2020); Seker et al. (2022)
use labeled morphological tokenization at the fine-
tuning phase, and show improvements on multi-
ple tasks. However, they do not exploit the poten-
tial of employing such tokenization already at the
pre-training phase. Finally, Avraham and Gold-
berg (2017) display an interplay between morphol-
ogy and semantics for Hebrew when incorporating
morphological knowledge beyond text (e.g. parts-
of-speech) at the pre-training phase of the non-
contextualized FastText model (Bojanowski et al.,
2017), inspiring us to address the question of em-
ploying explicit morphological knowledge into a
contextualized PLM for Hebrew.

In this work we explore the impact of incorpo-
rating explicit morphological knowledge at the pre-
training phase of a contextualized PLM for He-
brew, by introducing morphologically-driven tok-
enization methods. Through the utilization of mor-
phologically based sub-word tokenization rather
than a purely statistical one, our tokenization meth-
ods hold the potential for the model to exploit this
morphological knowledge during the acquisition of
contextualized representations, as well as to demon-
strate morphological composition capabilities at
inference time. By solely modifying the tokeniza-

tion, no architecture modifications are required, as
previous studies have suggested for other MRLs
(Alkaoud and Syed, 2020; Nzeyimana and Niy-
ongabo Rubungo, 2022), making them applicable
for other PLMs, e.g., auto-regressive models.

Our results on a benchmark of tasks in-
cluding: Morphological Parsing, Word-Sense-
Disambiguation (WSD), Dependency Parsing,
Named entity Recognition (NER) and Question
Answering (QA), demonstrate an improvement of
morphologically-driven tokenization on most tasks,
achieving a notable increase of up-to 3 F1 score for
NER and 1 F1 score for dependency parsing.

2 The Challenge: Bridging the Gap
between Morphology & Tokenization

2.1 Hebrew Morphology

Hebrew is a morphological-rich language, mani-
festing semantic and syntactic information as mod-
ifications of its words form. For example, the En-
glish phrase "and when I loved her" translates into
a single Hebrew space-delimited token ,וכשאהבתיה!
as a result of the following morphological pro-
cesses: the root אהב! (love) is inflected in 1st

person-past form, yielding אהבתי! (I loved); the
prefixes combination ו! (and) כש! (when) are joined,
וכשאהבתי! (and when I loved); יה! (her) suffix is
joined, resulting in the complete form (joining the
two י! into a single one). Modifications of person,
number, and tense, as well as having many excep-
tional roots, are reflected through non-concatinative
morphology (McCarthy, 1981). Conversely, deter-
mining the underlying morphological structure of
a word becomes challenging due to the language’s
high ambiguity arising from the intertwined mor-
phological processes.



2.2 The Morphological Tokenization
Hypothesis

Our hypothesis is that morphologically based sub-
words should allow the model to (i) learn more
effectively representations of morphologically re-
lated words, despite having distinct forms, and (ii)
better handle rare and unseen words through mor-
phological composition. To keep our modifica-
tions as minimal as possible, manifested only in
changing the tokenization method and not the pre-
training architecture, we focus on the morphologi-
cal phenomenon of joining prefixes and suffixes.

3 Morphologically-Driven Tokenization

Putting the aforementioned hypothesis to the test,
we consider two different tokenization methods for
incorporating explicit morphological knowledge in
the pre-training phase: Morphological Segmenta-
tion and Prefix-Suffix Separation tokenizations.

Morphological Segmentation Tokenization
Facing the high ambiguity of Hebrew calls for
a process of morphological segmentation for
tokenizing a word into its morphemes. In this
process, a given word form is disambiguated into
its underlying morphemes based on the word’s
context. Tokenization of words sharing the same
lexical host joined with different prefixes and
suffixes results in similar sub-words for this lexical
host, as depicted in Table 1 (column 6). While
holding the potential of supplying morphologically
based sub-words, the segmentation is done
automatically via a dedicated model so this process
is prone to segmentation errors propagated to the
PLM. Additionally, it introduces dependency of an
external segmentation utility used by the PLM in
both pre-training and inference phases.

Prefix-Suffix Separation Tokenization A
lighter alternative for morphologically-based
separation of prefixes and suffixes from a word
host, is to always separate valid prefixes and
suffixes character sequences, as depicted in Table
1 (column 7). Instead of disambiguating a word
form into its underlying morphemes depending
on context, we tokenize a word in a deterministic
way solely based on its character sequence by
separating potential prefixes and suffixes. While
this method can still successfully separate prefixes
and suffixes from a host, it introduced an additional
level of ambiguity, as words not sharing the same
host might be tokenized to the same subwords.

4 Experiments

We set out to measure the impact of incorporat-
ing explicit morphological knowledge into the pre-
training phase through our morphologically driven
tokenizations. We do so by pre-training multiple
language models utilizing the different tokeniza-
tion methods proposed herein (Section 4.1). Each
tokenization method is applied using 3 vocabulary
sizes: 16K (small), 32K (standard, Devlin et al.,
2019) and 64K (large), as a way to assess the im-
pact of the vocabulary size independently of the im-
pact of the tokenization method. Models are then
evaluated on a benchmark of downstream tasks
requiring a mixture of morphological, syntactic
and semantic knowledge, illuminating the different
types of knowledge acquired by models trained on
different tokenization methods (Section 4.2).

4.1 Experimental Setup
Pre-training In order to fairly compare the differ-
ent tokenization methods we pre-train BERT-based
models using the dataset of Hebrew Wikipedia and
HeDC4 corpus (Shalumov and Haskey, 2023) and
the pre-training configuration with the framework
of (Izsak et al., 2021) (see Appendix C for details).

Baseline As a baseline, we pre-train mod-
els utilizing WordPiece tokenization (Schuster
and Nakajima, 2012), being the standard non-
morphologically-driven method. This follows up
on previous successful pre-training of BERT-based
models for Hebrew (Chriqui and Yahav, 2022;
Seker et al., 2022; Guetta et al., 2022).

Morphological Segmentation Tokenization We
pre-process the dataset using a state-of-the-art mor-
phological segmentation tool (Zeldes, 2018; Zeldes
et al., 2022) in order to convert each word into
separated prefixes-host-suffix format. After this
pre-processing takes place, WordPiece tokenization
is standardly applied. Since the Hebrew morpho-
logical segmentation phase is applied here in the
wild, not on a standard benchmark, we manually
compare morphological segmentation tools by eval-
uating them on a random sample of the pre-training
corpus, and selecting the best performing tool (see
details in Appendix B).

Prefix-Suffix Separation Tokenization We pre-
process the dataset using regular expressions for
converting each word into separated prefixes-host-
suffix format. As in the previous method, Word-
Piece is applied afterwards.



NEMO BMC Homographs HTB ParaShoot HeQ

Token Morph POS Features
Dependency

Parsing
F1 F1 F1 F1 F1 F1 F1 EM F1 EM F1

Baseline 82.99 78.87 90.98 96.04 96.24 95.95 88.34 15.02 35.86 47.31 58.55
Morphological
Segmentation

86.43 81.54 91.09 96.10 96.39 96.10 89.31 17.95 38.36 37.72 54.69

Prefix-Suffix
Separation

85.71 80.71 90.47 95.56 96.26 95.92 87.3 9.53 24.03 29.22 44.66

Table 2: Main Results: a comparison of all tokenization methods using a vocabulary size of 32K subwords. Best
performing method per task is in bold. Full benchmark results can be found in Appendix E.

4.2 Benchmark Evaluation

We evaluate all models on a Hebrew benchmark
that comprises the following tasks, and report their
respective standard metrics: Named Entity Recog-
nition (NER) both word- and morpheme-level (F1,
Bareket and Tsarfaty, 2021; Mordecai and Elhadad,
2005); Question Answering (QA) (EM and F1,
Keren and Levy, 2021; Cohen et al.); Word Sense
Disambiguation (Homographs) (Macro F1, Shmid-
man et al., 2023); Morphological segmentation,
part-of-speech tagging (POS), morphological fea-
tures tagging, and dependency parsing (Aligned
Multiset F1, UAS F1)Sade et al., 2018; Zeldes et al.,
2022). Further details are provided in Appendix D.

5 Results & Analysis

Our experiments main results are depicted in Ta-
ble 2. The full results are detailed in Appendix E.

Tokenization Methods Impact Both morpholog-
ically driven tokenization methods outperform the
baseline for NER on NEMO by up-to 3 F1 points in
both token and morpheme levels. The significance
of morphologically based tokenization in properly
representing OOVs in MRLs is particularly evident
in this task as named entities are often unknown
to the model during pre-training, and are naturally
prefixed with ו! (and), ש! (that), מ! (from) and ל! (to).
Morphological Segmentation tokenization shows
an increase of 1 F1 point on dependency parsing,
and modest improvements on homographs, POS
and morphological features prediction.

The baseline surpasses the Prefix-Suffix Separa-
tion method on all tasks except for NER on NEMO,
and negligibly for POS on HTB. While this method
proves effective for named entities, it introduces
increased ambiguity in regular words, and a higher
split count, which has been previously claimed to
decrease models’ performance (Keren et al., 2022;
Guetta et al., 2022; Shmidman et al., 2023).

The weak performance of all models in QA and
the contrasting trends on the two datasets makes
drawing conclusions regarding the tokenization
methods rather challenging. We leave further in-
vestigation of this issue, which is particular to QA
(Keren and Levy, 2021), for future research.

Vocabulary Size Impact Figure 1 demonstrate
the positive impact of increasing the vocabulary
size, supporting previous studies (Seker et al., 2022;
Guetta et al., 2022). This is most evident in NER
at token level and QA on both datasets, for almost
all tokenization methods (see Appendix E). For
NER on NEMO at token level and dependency pars-
ing on HTB, where our Morphological Segmenta-
tion tokenization demonstrates the most notable
improvement over the baseline with a vocabulary
size of 32K, it seems as if increasing the vocabulary
size to 64K closes this gap. We suggest that this
is due to memorization rather than generalization
to rare and unseen words, inviting future research
focusing on the impact of even larger vocabular-
ies (Feng et al., 2022), purely open-vocabulary ap-
proaches (Tay et al., 2021), as well as on measuring
the generalization capabilities of PLMs for Hebrew,
as done for other MRLs (Moisio et al., 2023).

6 Conclusion

Our work illustrates the benefits of incorporating
explicit morphological knowledge within the pre-
training phase. Our proposed Morphological Seg-
mentation tokenization method enables the model
to effectively learn from and generalize to rare and
unseen words through morphological composition.
Experimenting on Hebrew, a highly ambiguous
MRL, shows improved performance on multiple
tasks, as well as illuminating again the benefits of
larger vocabulary sizes. These findings call for re-
search endeavours focusing on better tokenization
methods for better language models for MRLs.



Limitations

Our usage of Izsak et al. (2021) as a pre-training
framework explores a single default setup with re-
spect to the architecture (BERT-based), model’s
size (large), and other pre-training parameters.
While being the first apples-to-apples comparison
of Hebrew language models, as well as an effective
and fast pre-training utility, it might still be insuffi-
cient for achieving optimal model performance.

Another limitation of our proposed Morpholog-
ical Segmentation tokenization is its inherent re-
liance on a pre-processing phase which is prone to
errors, potentially having a negative impact on the
learned representations, as well as in inference time.
Additionally, while introducing a more morpholog-
ical adequate tokenizations, they yield higher num-
ber of subwords per word, which might undermine
the models’ performance as previously argued by
Guetta et al. (2022); Shmidman et al. (2023).

From a morphological perspective, our research
is focused on incorporating morphological knowl-
edge of prefix and suffix nature only, whereas He-
brew morphologically shows far richer phenomena
(Appendix A), which we leave for future research.
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Hebrew suffixes indicate either genitive or ac-
cusative case-marking for nouns and verbs, respec-
tively: י! (mine), !K (you/rs 2nd person), ה! (her/s),
ו! (him/his), נו! (ours/us), !Nכ (you/rs 3rd person,
feminine), !Mכ (you/rs 3rd person, masculine), !N/ !Nה
(them/theirs, feminine), !M/!Mה (them/theirs, mascu-
line). Following its linguistic functionality, only a
single suffix can be joined with a word.

Hebrew’s Morphology Beyond Prefixes-Host-
Suffix Hebrew includes also the processes
of derivation and inflection, which are non-
concatinative. Taking them into account, tokeniza-
tion could be potentially further improved by work-
ing on a word’s root-granularity rather than on a
host granularity separated from its prefixes and suf-
fix only, allowing to further generalize to nouns’
singular-plural forms and verb’s person, tense and
Binyan (Hebrew has 7 different verb structures
called Binyan, translated as structure or build-
ing in Hebrew, reflecting linguistic information as
passive-active, voice and more.). However, exist-
ing Hebrew tools and datasets do not provide this
granularity. Hebrew also has a complete system
of diacritics, efficiently disambiguating most texts.
However, the majority of natural and available text
is non-diacritized, thus it can not be exploited.

WordPiece Integration Since WordPiece tok-
enization ignores spaces 2 and due to the fact He-
brew prefixes like ו! (and) and ה! (the) are also used
as suffix (his and hers, respectively), separation
of prefixes and suffixes might result in a sentence-
level ambiguity, where a word’s suffix might ac-
count as the next word’s prefix. To avoid such
ambiguity we mark prefixes as p+ distinguished
from suffixes which we mark as +s.

Hebrew Overlapping Prefixes and Suffixes He-
brew prefixes מש! (since) and מ! (from), כש! (when)
and כ! (as/like), and suffix נו! (our) and ו! (his),
have a common prefix/suffix, respectively. Due to
Hebrew’s extreme ambiguity, a word like משרות!
beginning with the prefix מש! might be a prefix מש!
joined to a host (since Ruth), or a prefix מ! joined
to a host beginning with ש! (as a service), or simply
a host beginning with מש! (jobs). Therefore we
further break מש! as ש! ,מ! כש! as ש! ,כ! and נו! as ו! ,נ! to
achieve the maximal overlap of subwords between

2We refer to Huggingface’s implementation of a pre-
tokenizer, pre-processing text into tokens and ignoring spaces,
applying WordPiece on the tokens without considering the
spaces.

words.

Splitting Only Valid Prefixes As depicted in Ta-
ble 1 (column 7), the Prefix-Suffix Separation Tok-
enization does not reach maximal overlap because
the word ששחרור! is tokenized into ש!+שחרור! instead
of into +ש!+חרור! ש! which includes the host’s sub-
word חרור! as in the other forms. Since Hebrew
morphology permits a mixture of up to 4 different
prefixes (e.g. +כ! +ב! +ש! ו! like in the word [...Mפורס
[כי! ושבכמחצית! [... !Mמהמקרי] translated as [It has
been published that...] and that in about half [of the
incidents...]), we chose to separate only 55 valid
combination of prefixes, instead of all possible pre-
fixes, due to the exponentially large combinatorical
space of possible mixture of prefixes (beyond 3K),
making it closer to a character-based approach, pos-
sibly obscuring the actual impact of incorporating
morphological knowledge, rather than utilize char-
acters.

B Morphological Segmentation Tools
Comparison

We consider 4 different Hebrew morphological seg-
mentation tools: YAP (Seker et al., 2018) which
is based on a lexicon, RFTokenizer (Zeldes, 2018)
which is character based, optionally considering
PLM representations, and assuming concatinative
morphology, and the PLM based, not assuming
concatinative morphology, Trankit (Nguyen et al.,
2021), and (Brusilovsky and Tsarfaty, 2022).

We do not use (Nguyen et al., 2021) since its
segmentation is limited to either keeping a word
as is, or segmenting it in a single way, disregard-
ing Hebrew’s far higher ambiguity including many
words with more than 2 possible segmentations
(Shmidman et al., 2023). We choose to not use
(Brusilovsky and Tsarfaty, 2022) despite its state-
of-the-art performance because of its hallucina-
tions, most notably for names, which are abundant
in natural free texts used for pre-training.

We segment 128 sentences (3K words) randomly
sampled from the pre-training corpus using both
YAP and RFTokenizer. Automatic inspection re-
veals they produce identical segmentations for 92%
of the words, excluding non-words and truly am-
biguous cases. When they disagree on the seg-
mentation, manual inspection reveals RFTokenizer
presents an error rate of 4% whereas YAP demon-
strates an error rate of 52%.

Beyond the performance aspect, another impor-
tant consideration is the computation time required



to process the whole dataset using each of these
tools. RFTokenizer computation is fast enough to
allow pre-processing the whole dataset in reason-
able time by parallelizing the pre-processing over
multiple GPUs.

C Pre-training Details

Dataset Pre-training dataset include Hebrew
Wikipedia (1.4GB) and the recently released
HeDC4 corpus (Shalumov and Haskey, 2023) con-
taining 47.5GB of de-duplicated cleaned texts. The
dataset is pre-masked using 5 copies, yielding a
little more than 100GB of text, as recommended.
1% of the dataset is held for evaluation along the
pre-training.

Pre-training Parameters Pre-training follows
(Izsak et al., 2021) recommendations, using 23K
steps of 4K batch size, instead of the time-based
budget, roughly achieving pre-training of 96M
samples in total. Rest of the parameters are
as indicated in the paper and in their github
repository: https://github.com/IntelLabs/
academic-budget-bert.

D Downstream Tasks Details

D.1 Fine-tuning Details

For NER at token level and QA we fine-
tune all models using Huggingface’s framework
(Wolf et al., 2020) token classification and ques-
tion answering standard implementations. For
morphological-level tasks of segmentation, part-
of-speech, morphological features prediction and
NER we fine-tune all models (Brusilovsky and
Tsarfaty, 2022) framework for jointly learning seg-
mentation & POS & morphological features pre-
diction and segmentation & NER. Since Morpho-
logical Segmentation Tokenization requires pre-
segmentation, which is performed by a model fine-
tuned by itself on a morpheme-level dataset, we
use separate RFTokenizer models for the different
datasets: for UD-HTB (Sade et al., 2018) we use
an RFTokenizer fine-tuned on UD-IAHLT (Zeldes
et al., 2022) only, and vice-versa. For dependency
parsing we use DiaParser (Attardi et al., 2021) fol-
lowing (Zeldes et al., 2022) evaluation, provided
gold segmentation. For Homographs we produce
PLMs representations of the homographs in con-
text (i.e. effectively equivalent to full training with
frozen PLMs), and use (Pedregosa et al., 2011) to
train a separate MLP on top of the sum of the repre-

sentations (as each homograph might be tokenized
into more than one subword) for each homograph,
using either 5, 25, 100, or 90% of the dataset for
training, and testing on the rest, using a 10-fold
cross validation, as recommended by (Shmidman
et al., 2023).

D.2 Pre-processing Using Proposed
Tokenization

From implementation perspective, our tokenization
methods are applied on the dataset, rather than in-
corporated into the PLM’s Tokenizer (Wolf et al.,
2020). For NER and the morphologic tasks, this
takes the form of applying the tokenizations of
RFTokenizer and our regex based tokenization on
the sentences tokens. For Homographs, we run
the tokenizers on the datasets sentences. QA re-
quires further adaptation as the context, question
and answer change. First, we run our tokeniza-
tion on the context and on the question separately.
Then, we construct a regex on top of the original
answer, consuming potential separators between
prefix to host and between host to suffix, added by
our tokenizations. We use this regex to search the
newly tokenized context, to find the new form of
the answer and its position, following the dataset’s
format. This ensures we do not tokenize the context
and the answer in different ways, which is possible
since RFTokenizer utilizes the surrounding words
of the answer, which is different in the context and
in the extracted labeled answer.

E Benchmark Full Results

We hereby present the full results of all models,
including all tasks, all tokenization methods and all
vocabulary sizes. Each table refers to a different
task, except Table 4 which includes all morphologic
tasks together.

https://github.com/IntelLabs/academic-budget-bert
https://github.com/IntelLabs/academic-budget-bert


NEMO-token NEMO-morph BMC-token
Tokenization

Method
Vocabulary

Size
F1 F1 F1

Baseline
16K 82.32 78.23 90.06
32K 82.99 78.87 90.98
64K 86.11 79.73 91.64

Morphological
Segmentation

16K 83.21 80.26 90.42
32K 86.43 81.54 91.09
64K 86.64 83.82 91.31

Prefix-Suffix
Separation

16K 83.75 80.49 89.47
32K 85.71 80.71 90.47
64K 86.04 82.53 90.47

Table 3: NER Results

UD-HTB & NEMO UD-IAHLTwiki

Seg POS Features
Dependency

Parsing
Seg POS Features

Dependency
Parsing

Tokenization
Strategy

Vocabulary
Size

F1 F1 F1 UAS LAS F1 F1 F1 UAS LAS

Baseline
16K 98.24 96.28 95.86 91.79 88.56 98.09 95.70 92.77 93.75 90.58
32K 98.16 96.24 95.95 91.64 88.34 98.16 95.92 93.03 93.91 90.64
64K 98.05 96.08 95.84 92.43 89.5 98.07 95.80 92.83 93.96 90.85

Morphological
Segmentation

16K 98.20 96.40 96.04 92.29 89.05 98.00 95.71 92.80 94.29 91.14
32K 98.22 96.39 96.10 92.43 89.31 98.09 95.99 93.14 94.63 91.75
64K 98.16 96.21 95.97 92.98 89.92 97.64 95.50 92.73 94.81 92.09

Prefix-Suffix
Separation

16K 98.20 96.37 96.05 90.58 86.99 97.79 95.42 92.57 92.73 89.23
32K 98.28 96.26 95.92 90.82 87.3 97.49 95.25 92.48 91.73 88.31
64K 98.17 96.33 96.03 90.39 86.71 97.89 95.73 92.83 92.44 88.83

Table 4: Morphologic tasks results



ParaShoot HeQ
Tokenization

Method
Vocabulary

Size
F1 / EM F1 / EM

Baseline
16K 26.71 / 10.73 50.13 / 38.65
32K 35.86 / 15.02 58.55 / 47.31
64K 40.87 / 19.54 62.94 / 52.22

Morphological
Segmentation

16K 24.27 / 08.68 46.53 / 30.19
32K 38.36 / 17.95 54.69 / 37.72
64K 29.75 / 11.41 56.78 / 39.92

Prefix-Suffix
Separation

16K 27.67 / 14.26 41.95 / 27.48
32K 24.03 / 09.53 44.66 / 29.22
64K 30.13 / 13.01 46.44 / 29.61

Table 5: QA results

Tokenization
Method

Vocabulary
Size

F1
k = 90%

F1
k = 5

F1
k = 25

F1
k = 100

Baseline
16K 95.57 63.48 86.49 92.23
32K 96.04 66.62 88.84 93.63
64K 95.64 64.88 88.15 93.15

Morphological
Segmentation

16K 96.09 68.91 90.16 94.05
32K 96.10 63.95 87.03 93.14
64K 96.20 68.41 90.11 94.17

Prefix-Suffix
Separation

16K 95.20 64.23 86.81 92.16
32K 95.56 66.73 88.79 93.11
64K 95.34 64.92 87.85 92.72

Table 6: Homographs results
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Figure 1: A comparison of the different tokenization methods over the tasks of NER NEMO at both token and
morph levels, and dependency parsing on both datasets, across the vocabulary size presented as X axis.


